Convenient estimators for the panel probit model:

نویسنده

  • William Greene
چکیده

Bertschek and Lechner (1998) propose several variants of a GMM estimator based on the period specific regression functions for the panel probit model. The analysis is motivated by the complexity of maximum likelihood estimation and the possibly excessive amount of time involved in maximum simulated likelihood estimation. But, for applications of the size considered in their study, full likelihood estimation is actually straightforward, and resort to GMM estimation for convenience is unnecessary. In this note, we reconsider maximum likelihood based estimation of their panel probit model then examine some extensions which can exploit the heterogeneity contained in their panel data set. Empirical results are obtained using the data set employed in the earlier study. JEL classification: C14; C23; C25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simplified Implementation of the Heckman Estimator of the Dynamic Probit Model and a Comparison with Alternative Estimators

This paper presents a convenient shortcut method for implementing the Heckman estimator of the dynamic random effects probit model and other dynamic nonlinear panel data models using standard software. It then compares the estimators proposed by Heckman, Orme and Wooldridge, based on three alternative approximations, first in an empirical model for the probability of unemployment and then in a ...

متن کامل

Convenient Estimators for the Panel Probit Model: Further Results

Bertschek and Lechner (1998) propose several variants of a GMM estimator based on the period specific regression functions for the panel probit model. The analysis is motivated by the complexity of maximum likelihood estimation and the possibly excessive amount of time involved in maximum simulated likelihood estimation. But, for applications of the size considered in their study, full likeliho...

متن کامل

Probit models: Regression parameter estimation using the ML principle despite misspecification of the correlation structure

In this paper it is shown that using the maximum likelihood ML prin ciple for the estimation of multivariate probit models leads to consistent and normally distributed pseudo maximum likelihood regression parame ter estimators PML estimators even if the true correlation structure of the responses is misspeci ed As a consequence e g the PML estimator of the random e ects probit model may be used...

متن کامل

A Monte Carlo Study of Bias Corrections for Panel Probit Models

We examine bias corrections which have been proposed for the Fixed Effects Panel Probit model with exogenous regressors, using several different data generating processes to evaluate the performance of the estimators in different situations. We find a best estimator across all cases for coefficient estimates, but when the marginal effects are the quantity of interest no analytical correction is...

متن کامل

Fixed Effects Estimation of Structural Parameters and Marginal Effects in Panel Probit Models

Fixed effects estimators of nonlinear panel models can be severely biased due to the incidental parameters problem. In this paper I find that the most important component of this incidental parameters bias for probit fixed effects estimators of index coefficients is proportional to the true value of these coefficients, using a large-T expansion of the bias. This result allows me to derive a low...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002